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Abstract—The symmetric successive overrelaxation (SSOR) the number of unknowns escalates rapidly as the size of the
preconditioning scheme is applied to the conjugate-gradient (CG) problem increases. Therefore, the limiting factor in dealing
method for solving a large system of linear equations resulting with 3-D problems is the unknown count and the associated
from the use of edge-based finite-element method (FEM). For . . .
this scheme, there is no additional computing time required demands on computer storage gnd .Solutlon time. Techniques
to construct the preconditioning matrix and it contains more that haveO(V) storage and solution times are, thus, necessary
global information of the coefficient matrix when compared with  to tackle 3-D problems, whe® represents the total unknown
those of the banded-matrix preconditioning scheme. The efficient number. This is one of the principal reasons for the popularity
implementation of this preconditioned CG (PCG) algorithm is o partial differential equation technique over IE methods.

described in details for complex coefficient matrix. With SSOR . . .
as the preconditioner and its efficient implementation in the CG As the problem size increases, the IE and its hybrid methods

algorithm, this PCG approach can reach convergence in five times Often needO(N') storagel < ! < 2, and quickly become
CPU time shorter than CG for several typical structures. By unmanageable in terms of memory storage and solution time.

comparison with other preconditioned techniques, these results The FEM is primarily a volume formulation for 3-D analysis
demonstrate that SSOR preconditioning strategy is especially 5 the problem domain is broken into a finite-element basis
effective for CG iterative method when an edge FEM is applied to function set used to discretize the fields. The resulting linear
solve large-scale time—harmonic electromagnetic-field problems. - : .
system of equations scales agV for the FEM, wherem is
the average number of nonzero matrix equation elements per
row of the sparse linear system. This value is dependent upon
the order of the finite element used, but is typically between
10-100 and is independent of the size of the mesh. For a
. INTRODUCTION six-unknown vector edge-based tetrahedral linear interpolation

HE finite-element method (FEM) has been applied tfinite elementymn is typically less than 20 [4]. The application

the analysis of problems in electromagnetics for over 3 the FEM to electromagnetic problems often yields a sparse,
years. It can combine geometrical adaptability and materR@Sitive definite, symmetric, and very high-order system of
generality for modeling arbitrary geometry and materials dfiear algebraic equations. Solving such a system is a major
any composition. As a result, a large number of research pap@?@putgtional task. The classical method includes the Q_aussian
can be found in literature [1]-[4] and some books systemicalﬁ}'m'nat'on method and the closely related decomposition
describing the application of this method in electromagneti¥dth O(N?) computational complexity. Moreover, these
are currently available [5], [6]. A finite-element model isS0-Called “direct” methods bring “fill-in,” i.e., nonzero entries
natural when the problem contains inhomogeneous mate@§ created in certain positions where the coefficient matrix
regions so that surface integral-equation (IE) methods are eitg@inally has zeros. Fill-in is undesirable because it increases
incapable of modeling or are very costly to model. When apoth the computing time and storage requirement. Although

plied to three-dimensional (3-D) problems in electromagnetidis fill-in could be reduced to some degree by selecting a
suitable global ordering of the unknowns, some node-ordering

strategies aim at making a coefficient matrix with a small
band and present some storage schemes appropriate for such
Manuscript received October 14, 1999; revised April 18, 2001. Thiswork waBatrices. Nevertheless, these orderings are most efficient
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to employ solvers whose memory requirements are a small franid narrow structures. Therefore, the SSOR preconditioner can
tion of the storage demand of the coefficient matrix. This necespeed up the CG algorithm more efficiently. Although the ap-
sitates the use of iterative algorithms instead of direct solvgreoximate inverse preconditioning scheme is widely used for
to preserve the sparsity of the finite-element matrix. Especiallye CG algorithm [11], [18], it relies on finding a sparse pre-
attractive are iterative methods that involve the coefficient maenditioning matrixA/, which minimizes the Frobenius norm
trices only in terms of matrix-vector multiplication. The mosbf the residual matrix. The construction&f is made usually in
powerful iterative algorithm of these types is the conjugate-gra-column-by-column manner in order to minimize the construc-
dient (CG) algorithm for solving positive definite linear systention time. An important aspect of this approach is that only a few
[7]. Although the BiCG, a variation of the CG algorithm, someeolumns of A need to be constructed, and these columns are
times converges much faster than the CG, its convergencayigically chosen to refer to rows of a coefficient matrix. It can
highly erratic. The convergence rate of the CG method is mairtbg inferred that the approximate inverse preconditioning matrix
determined by the condition number of the coefficient matrixlso contains more of the global information of a coefficient ma-
which is closely related to the distribution of the eigenvalues tfix when compared with a diagonal/block diagonal precondi-
coefficient matrix. The condition number of a linear system dfoner. However, much time is spent in the construction phase
equations usually increases with the number of unknowns. Téred the example displayed in [18] shows that approximate in-
solution of the linear system is the main expense of the whalerse preconditioning scheme does not lead to a significant im-
problem solution, which consumes over 95% of the CPU tingrovement in CPU time consumption.
for FEM application in electromagnetics. It is then desirable to In the literature [12], [13], another promising preconditioner
precondition the coefficient matrix so that the modified systefor the CG algorithm is the algebraic multigrid method, and it
is well conditioned and can converge to an exact solution in siggduces the overall computation time by a factor of six when
nificantly fewer iteration numbers than the original system. compared to the SSOR scheme. However, the examples are only
involved in the analysis of a two-dimensional (2-D) Poisson
II. THEORY or scalar Helmholtz equations. The 3-D full-wave vector
cI)-|Gelmholtz equations often met in microwave engineering are

Recently, the number of iterations required in the CG meth . -
. not concerned. Nevertheless, the algebraic multigrid method
can be controlled to some degree by the use of various precondi- o " . .
IS 'a competitive preconditioner for an iterative solver and can

tioning strategies [8]—-[13], which attempt to transform the ma-

trix (1) into one with more favorable properties for an iterativgo.temla”y be extended to 3-D full-wave electromagnetic anal-
method as follows: ysis in the future after some efforts have been taken. Although

the SSOR preconditioning scheme has been developed by Saad
AX = b, 1) [11], to the best knowledge of the authors, its application is
not found for time—harmonic electromagnetic-field full-wave

The incompletd_U factorizations of the coefficient matrix andanalysis in the published literature and no comparison of con-
its block variants are a widely used class of preconditioneygrgence curves is made with other preconditioning schemes.
[14], another is based on the factorization of the approximatéfierefore, in this paper, the SSOR scheme is applied to a vector
inverse of the coefficient matrix [15]-[18]. However, to formFEM for analysis of the large 3-D Helmholtz vector-equation
these preconditioners, additional computing time is require@l€ctromagnetic boundary-value problems.

depending on the preconditioning algorithm. Therefore, in order!n the SSOR preconditioning scheme, the preconditidder

to apply preconditioners to a solution of large sparse linear ng-chosen as follows:

trix (1) from the FEM, which has a computational complexity - S

O(N), the complexity to obtain a preconditioner should be no M =(D+L)(D)" (D +U) @

greater than that. The most simple and easiest way to satig§ffere 4 — 1, + D + U in (1), L is the lower triangular matrix,
this limit is to use a diagonal or block diagonal inverse of thg,) is the positive diagonal matri/ is the upper triangular ma-
coefficient matrix as a preconditioner [19], [20]. These simplgiy angp — (1/w)D,0 < w < 2. Itis said that the value of
preconditioners can reduce the number of iterations for densejpes not have great influence on the convergence of the sym-
linear systems from IE methods, but they do not result in @ Sigietric successive overrelaxation preconditioned conjugate-gra-
nificant reduction of iteration for sparse linear systems frogjant (SCG) algorithm [11], and we simply choose its value to

the FEM. Like the diagonal or block diagonal matrix precondye gne. Since the convergence speed of the CG method largely
tioner, the symmetric successive overrelaxation (SSOR) PreceRpends on the condition number of the coefficient matrinf

ditioner can also directly be derived from the coefficient matri(l) the linear system (1) could be scaled by a preconditidfier
without additional cost, but can lead to a significant convergengg then transformed into the system given by

improvement for sparse linear systems. Its factorization is given

a priori, and there is no possibility of breakdown, as in the con- AX =b 3
struction phase of incomplete factorization methods [21]. It is

given in a factored form and shares many properties of othépere

factorlzatlon—pgsed mgtho@s. Anqther adyantage qf the SSOR i :D(D n L)_lA(D LUy

as a preconditioner exists in that it contains more information LoD .

of the coefficient matrix when compared with a diagonal/block b =D~(D +L)"b

diagonal matrix, which is perhaps efficient only for very long X =(D+U)X. (4)
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For version A of the CG method given in [7], the straight- Y z
forward preconditioned conjugate-gradient (PCG) algorithm is
implemented as follows. The right-hand-side vector is initially

transformed and the system is then solved for the intermediate Z 7
vectorX = (D + U)X, and this vectolX is multiplied by D, <

(D + L)™*, A, and(D + U)~* in succession at each iterative - - - L
step. When the solution convergés,could be recovered from ] »laple

X. If NZ(A) denotes the number of nonzero entries in matrix : ] ,

A, this straightforward implementation of the PCG would re-
quire6 N +4N Z( A) multiply—adds per iteration. However, con-
sidering thatD+L) (D +U), the part of coefficient matrid, 0 ; ! ! : : g 5
AP;, andA®R;, in the CG algorithm [6] can be computed ef- } } e } [N
ficiently. Since the efficient implementation of SCG algorithms o8 ! ‘ ‘ -
for complex coefficient matrix is not given in [11], the SCG al-
gorithm is given in detail as follows.

With an initial guess¥, and define

0.6

[S11]

0.4

Ro=D(D + L) *b— AX, (5) .
Py =Go = A"R, (6) .
K =2D — D. @) 0.0
8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12. 0
Fori =0,1,...,let Frequency (GHz)
ti =(D+U)"'P, ®) ()
P - = 1 Fig. 1. (a) Configuration of a full-height dielectric-filled rectangular
AP, =Dt; + D(D + L) (Pi - Kti) (9) waveguide. (b) Magnitude of,; versus frequency for the dielectric post
||G || (10) discontinuity problem with widthe = 12 mm and length, = 6 mm.
matched layers (PMLSs) is placed at the output port to simulate
Xiy1 =X, + o, P, (11) the output matched load [22]. In Fig. 1(b), the curve shows our
Rt =R; — ;AP (12) calculations of the amplitude of an input reflection coefficient
Wity :(D n L)_“D“Rﬂrl (13) |S11| versus frequency, which is compared with the literature

~ ~ [1], and an excellent agreement is found. This provides a vali-
Giy1 =Wir1 +(D+U)™" (D”’Riﬂ - K”’Wi+1) (14) dation of our numerical FEM method and its implementation.

IG; ||2 Secondly, a 3-D discontinuity of a waveguide partially filled
B; :Lg (15) with a dielectric is shown in Fig. 2(a). The rectangular wave-
Gl guide has awidth of = 2 and a height of = 1 and the inserted
Piy1 =Giy1 + BB (16)  dielectric material slab has dimensiong:ef 0.888, d = 0.399,
where[|G]| = /{G. G is the Euclidean norm of the vector andw = 0.8 and the dielectric constant ef = 6e¢. In this

‘edge-FEM 3-D simulation, the domain is divided into 22 400
tetrahedrons containing 5751 nodes, 30518 edges, and 5566
forced edges. As aresult, a total of 24 952 unknown edges are to
be solved in alarge sparse matrix equation. In Fig. 2(b), the solid
curve shows our calculations of the amplitude of the input re-
flection coefficient|S1; | by the SCG iterative solver. The com-

sition. This efficient implementation of the SCG would require h Itf d d I
10N + 2N Z(A) multiply—adds per iteration. This cost of com- parison with aresult from [2] is made and excellent agreement is
found. This demonstrates the validation of our numerical FEM

putation is asymptotically one-half as many as the straightfor- Method and SCG iterative algorithm implementation.

ward |mplementat!on ItV Z(A) is large enough and is aImost The biconjugate gradient algorithm (BCG) is the natural ex-
the same as the direct CG method. : : : .
tension of the CG to linear systems with the general non-Hermi-
tian nonsingular coefficient matrices. Although it is quite com-
petitive and sometimes converges faster than the CG approach
Our edge-based FEM is first used to analyze a 2-D discdior well-conditioned cases, the BCG iterates are not character-
tinuity in the waveguide filled with a full-height dielectric, asized by a minimization property, which means that the algo-
shown in Fig. 1(a). The rectangular waveguide have a width gthm can exhibit a rather irregular convergence behavior with
a = 22.86 mm and a height of = 10.16 mm and the inserted wild oscillations in the residual norm. Furthermore, the break-
dielectric material slab has a dimensionwef= 12 mm and down may even occur in the BCG algorithm. Fig. 3 gives the
L = 6 mm and a dielectric constant ef = 8.2¢4. In order error history when the CG and BCG solvers are applied to the
to obtain an input reflection coefficient, one block of perfectlyaveguide partially filled with a dielectric, as shown in Fig. 2,

the inner product is defined ¢, ¢) = 3", fig: for any two
VeCtOfo = [f17 f27 (RS fn]! g = [.917.927 fee 7gn] and the ad-
joint matrix A” is defined by(Af,g) = (f, A%g) for a given
matrix A. It can be easily inferred that® = (4*)%, where the
asterisk denotes a complex conjugation fﬂdbnotes atranspo-

I1l. NUMERICAL RESULTS AND DISCUSSION
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SCG and CG versus numbers of iteration at different operating
points are illustrated in Fig. 4. Therefore, the convergence be-
havior of the algorithms at different input reflection coefficients
I" can be observed. Fig. 4(a)—(c) shows the convergence curves
corresponding ta® = 0.02,0.50,0.95, respectively. It can be
found from Fig. 4 that both the SCG and CG methods con-
verge faster for a smaller reflection coefficient case than for a
larger one. This phenomenon may be attributed to the fact that
the sought fields are smoother when the input matching is good
and the fields vary sharply for large input mismatch. Although
the total number of iterations is different for these three cases,
it can be noted that the number of iteration for the SCG method
is 6.22, 5.75, and 5.34 times smaller than the direct CG one to
reach—70 dB residual errors, respectively. This computation
is carried out on a Pentium 400, and in the= 0.02 case,

the CPU time is 3948 s for the SCG and 24547 s for the CG
algorithm. The computational time of the SCG is 6.21 times
faster, nearly its improvement factor of the iteration number
when compared to the CG algorithm. This fact also demon-
strates that the computation cost of the efficient implementa-
tion of the SCG is almost the same as the direct CG method. In

Amplitude

15 17 1.9 21 23 25 27 order to compare the relative speedup of the SSOR and other
kob preconditioners, Fig. 5 displays the convergence characteristics
(b) of the SCG, tridiagonal preconditioned (TCG), diagonal precon-

. o I _ o ditioned (DCG), and conventional CG algorithms. As shown in
Fig. 2. (a) Configuration of a partial-height dielectric-filled rectangulaj:. h | ithm h h . | |
waveguide. (b) Reflection and transmission characteristics of a dielectric-loa e@-.57 the DCG algorithm has t e'mm'ma CPU cost, bUt only
waveguide versus normalized wavenumber. achieves 40%—-50% convergence improvement. The tridiagonal
preconditioner contains a bit more information of the coefficient
matrix than the diagonal matrix so that the TCG algorithm con-

f ! verges slightly faster for the residual error to reach 55 dB. Itis
0 still not clear why it becomes a bit slower afterwards. The SSOR
§ -1 preconditioner possesses much more global information of the
< j coefficient matrixA than diagonal/tridiagonal matrices and it
5 4 leads to better convergence improvement reasonably.

Bz 5 In order to investigate its adaptability to different microwave
6 structures, the SCG solver is applied to a PML terminated mi-
:g crostrip line. The dielectric constanat is chosen to be 2.25,

0 50000 100000 150000 the operating frequency at 9 GHz and geometric dimensions
Iteration Number are shown in Fig. 6 [18]. The domain is divided into 13500

tetrahedrons containing 3410 nodes, 18229 edges, and 3575
Fig. 3. Residual errors versus iteration number for the CG and BCG methggsced edges. As a result, a total of 14 654 unknown edges are
when normalized wavenumbggb = 1.88. . . .

to be solved in a large sparse matrix equation system. The error

norms of SCG, TCG, DCG, and conventional CG algorithms
where the residual errors defined Bs= ||b — Az||/||b|| for are compared in Fig. 7. It can be observed that the number
both CG and BCG algorithms. The CG method exhibits tha iteration for the SCG method is at least four times smaller
monotonic convergence behavior while the BCG is rather irretiran the direct CG one when reaching0 dB residual errors.
ular and it needs many more steps to reach convergence thimting their respective decreasing slopes, the convergence im-
the CG method because the use of PML absorbers within fli@vement is expected to be greater if the residual errors reach
computational domain significantly deteriorates the condition70 dB. In this example, the convergence improvement of the
number of the resulting FEM system. Even though the comCG is also larger than the DCG, but the difference is reduced if
vergence of both the CG and BCG methods can be acceldre smaller residual errors are required. By comparison with the
ated using a preconditioning technique, which amounts to imesults in [18], the SSOR preconditioning technique can achieve
proving the condition number of the matrix, it is well knowrmore than % improvement in convergence than that of approx-
that the CG iterative solver is robust and it guarantees convanate inverse one. Since the SSOR preconditioner is related to
gence even for a very poorly conditioned system. To investhe coefficient matrix4, the efficient implementation of its al-
gate the efficiency of our proposed preconditioned CG alggerithm makes the computational complexity almost the same
rithm for the solution of a large sparse matrix equation froms the ordinary CG solver without preconditioning. Therefore,
the FEM, errors defined aB = ||b — Az||/||b|| for both the the CPU time saving is also almost the same as convergence



CHEN et al: APPLICATION OF SCG ALGORITHM TO VECTOR FEM

Residue R (10dB)
A

1169

Residue R (10dB)

8 s 1 1 " "

0 5000 10000 15000 20000 25000 30000
Iteration number N

(b)

-6
8 \ . , A ,
0 5000 10000 15000 20000 25000 30000
Iteration Number
()
=
=]
S
)
-4
[5]
=}
=]
8
-4
-8 L
0 10000

Fig. 4.

20000 30000 40000

Iteration number N

(©

(a) Residual errors versus iteration number for both the PCG and conventional CG method when normalized wakghumi2e35 and reflection

coefficientI’ = 0.002. (b) Residual errors versus iteration number for both PCG and conventional CG method when normalized wavieriumbeg8 and
reflection coefficienT” = 0.50. (c) Residual errors versus iteration number for both PCG and conventional CG method when normalized waveriumbies0

and reflection coefficienf’ = 0.95.
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Fig. 5. Residual errors versus iteration number for SSOR, TCG, DCG, aRi). 7.

normalized wavenumbér;b = 1.60.

30000

Residual (10dB)

20000 40000 60000 80000
Iteration Number

Residual errors versus iteration number for SSOR, TCG, DCG, and

conventional CG methods for the waveguide partially filled with dielectric wheconventional CG methods for a PML truncated microstrip line with operating

1
1.05cm|
PML
0.21cm| Microstrip

i e— 3.095cm —’1\5

r

Fig. 6. Microstrip line geometry with PML truncation.

frequencyl’ = 9 GHz.

improvement. Compared to the approximate inverse precondi-

tioning scheme, the SSOR technique has the following three
advantages.

1) Its preconditioning matrix can be obtained directly from
coefficient matrix A without any additional computa-
tional cost and there is no possibility of breakdown as
met in the construction phase of the approximate inverse
matrix.

2) There is no need of additional memory to store the ele-
ments of approximate inverse matrix.

3) Since the SSOR preconditioning matrix is part of the
coefficient matrix 4, its efficient implementation in the
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Residual (10dB)

1 1 1 i 1 1
Fig. 8. Linear dipole antenna radiating in free space surrounded with PML 0 20000 40000 60000 80000 100000 120000 140000
medium and a PEC surface termination.

lteration Number

Fig. 10. Residual errors versus iteration number for SSOR, TCG, DCG, and
1.2 conventional CG methods for linear dipole antenna radiating in free space with
—— MOM operating frequency = 300 MHz.

found between them. The error norms of SCG, DCG, and con-
ventional CG algorithms are compared in Fig. 10. It can be ob-
served that the SCG algorithm is nearly four times faster than
the DCG to reach-40 dB residual error, while the conventional
CG algorithm cannot reach the required accuracy within a rea-
sonable time.

Normalized current distribution

IV. CONCLUSIONS

-06 -04 -0.2 0 0.2 0.4 0.6 In solving electromagnetic-field boundary-value problems by
Distance along dipole (M) the FEM, the differential equation is ultimately reduced to a set
of linear equations that can often be solved by iterative methods
Fig. 9. Comparison of normalized current distribution along dipole antenfigy electrically large structures. Iterative methods typically in-
between the method of moments and FEM. . L
volve sparse matrix-vector multiplications, and the most pop-
ular iterative solvers are the Krylov subspace orthogonaliza-
matrix-vector multiplication in the algorithm makes theion methods, on which CG and its variations are based. It is
computational cost economical and its CPU time reducegll known that the convergence of all iterative methods can
to almost one-half of the approximate inverse precondie accelerated using various preconditioning techniques. In this
tioned solver. paper, the SCG algorithm is proposed to solve the large sparse
The approximate inverse sparse matrix is not directly relatedratrix equation obtained from the edge-based FEM. The dis-
the coefficient matrix, therefore, its efficient implementation ofontinuity in a partially dielectric-filled waveguide is first ana-
the algorithm cannot be realized even though the constructiyaed as an example. Although the total iteration numbers vary
of the approximate inverse preconditioner is successful. at different operating frequencies, the preconditioned CG algo-
The analysis of a linear\ dipole antenna radiating in freerithm converges at least five times faster than the conventional
space is also taken to investigate the convergence improvenam. When compared with the DCG and TCG algorithms, the
of the SCG algorithm. The 2-D frontal view of this problem geeonvergence improvement of the SCG is larger since the SSOR
ometry is given in Fig. 8. The antenna is located at the cenfmeconditioner contains more global information of the coef-
of the problem domain and the total thickness of the PML suiieient matrix. If compared with the approximate inverse pre-
rounding the domain of interest is taken to be identical in allonditioning algorithm, the SSOR does not require additional
three directions. The surrounding layers of the PML are themmemputational cost for the construction of preconditioner, and
selves terminated by perfect electric conductor (PEC) surfadbe efficient implementation of the SCG makes the computa-
and the size of the problem domain of interest is selected taanal cost at each iteration step almost one-half that for the ma-
1.8X0 x 0.9X; x 0.9), including the eight layers of the sur-trix-vector multiplication, which is just the same as the conven-
rounding PML with a total thickness @3\ in all three di- tional CG algorithm. The planar microstrip circuits and linear
rections. The orthogonal FEM mesh for this domain generatgipole antenna radiating in free space are also analyzed as ex-
a total number of 70 630 unknown. The frequency of operati@amples to demonstrate the SCG algorithm validity for different
is chosen to be 300 MHz. The normalized current distributiatructures. Therefore, the SCG iterative method is a powerful
along the dipole from both the method of moments (MoM) anol for FEM application in large time—harmonic electromag-
FEM is drawn in Fig. 9 for comparison and a good agreementrigtic boundary-value problems.



CHEN et al: APPLICATION OF SCG ALGORITHM TO VECTOR FEM 1171

(1]

(2

(3]

[4]

(5]

(6]

(71

(8]

9]

(20]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES Ru-Shan Chen(M'93) was born in Jiangsu, China.
He received the B.Sc. and M.Sc. degrees from South-
east University, Nanjing, China, in 1987 and 1990,
respectively, both in radio engineering.

Upon graduation, he joined the Department
of Electrical Engineering, Nanjing University of
Science and Technology (NUST), Nanjing, China,
where he was initially a Teaching Assistant and then
a Lecturer in 1992. In September 1996, he was a

J-F. Lee and R. Mittra, “A note on the application of edge-ele Visiting Scholar with the Department of Electronic

. . - : ) . Engineering, City University of Hong Kong, initially
[ineesnf IonéEm.?;ﬂlsngM?ErrgV?/:V'g]?I.?ngyal.rg;worrofg nsgui%gﬂic;f;\”as a Research Associate, a Senior Research Associate in July 1997, and a

Sept. 1992 ' Re_sgarch Fellow in April 1998._Fror_n June to September 1999, he was also a
Y Wu and R. Lee, “The advantages of triangular and tetrahedral ed\ﬁsmng Scholar at Montreal University, Montreal, QC, Canada. In September
. ' ’ - ; . . 9, he became a Full Professor and Associate Director of the Microwave and
elements for electromagnetic modeling with the finite element methodg, yymnjcation Center, NUST. He has taught several courses, including “Com-
IEEE Trans. Microwave Theory Techvol. 45, pp. 1431-1437, Sept. ter |anguage and Algorithm,” “Professional English,” “Electromagnetic

J. S. Wang and R. Mittra, “Finite element analysis of MMIC structure|
and electronic packages using absorbing boundary condititBEE
Trans. Microwave Theory Techvol. 42, pp. 441-449, Mar. 1994.

K. Ise, K. Inoue, and M. Koshiba, “Three-dimensional finite-eleme
method with edge elements for electromagnetic waveguide disconti
ities,” IEEE Trans. Microwave Theory Techvol. 39, pp. 1289-1295,
Aug. 1991.

1997. . . o Field and Wave Theory,” “Computational Electromagnetics,” “Microwave
J. L. Volakis, A. Chatterjee, and L. C. Kempéinite Element Method Ferrite Theory and Applications,” and “Electromagnetic Compatibility.” He
for Electromagnetic Piscataway, NJ: IEEE Press, 1998. has authored or co-authored over 80 papers, including 42 papers that have
J. M. Jin, The Finite Element Method in ElectromagneticfNew York:  appeared in international journals. His research interests mainly include
Wiley, 1993. microwave/millimeter-wave systems, measurements, antennas, circuits, and

T. K. Sarkar and E. Arvas, “On a class of finite step iterative methodsomputational electromagnetics.

(conjugate directions) for the solution of an operator equation arising Dr. Chen was the recipient of the 1992 Third-Class Science and Technology
in electromagnetics,[EEE Trans. Antennas Propagatol. AP-33, pp. Advance Prize presented by the National Military Industry Department of
1058-1066, Oct. 1985. China, the 1993 Third-Class Science and Technology Advance Prize presented
0. Axelsson and L. Y. Kolotilina, “Preconditioned conjugate gradienby the National Education Committee of China, the 1996 Second-Class
methods,” inLecture Notes in MathematicA. Dold, B. Eckmann, and Science and Technology Advance Prize presented by the National Education
F. Takens, Eds. Berlin, Germany: Springer-Verlag, 1990, vol. 145€0ommittee of China, and the 1999 First-Class Science and Technology

Proceedings 1989. Advance Prize presented by JiangSu Province. He was also the recipient of the
0. Axelsson, “On the rate of convergence of the preconditioned conjllUST Excellent Honor Prize for academic achievement in 1994, 1996, 1997,
gate gradient methodRumer. Math, vol. 48, pp. 499-523, 1986. 1999, and 2000.

D. S. Kershaw, “The incomplete Cholesky-conjugate gradient method
for the solution of systems of linear equationd,"'Comput. Physvol.
26, pp. 43-65, 1978.
Y. Saadlterative Methods for Sparse Linear SystemBoston, MA:
PWS—Kent, 1995.
R. Mertens, H. De Gersem, R. Belmans, K. Hameyer, D. Lahaye,
Vandewalle, and D. Roose, “An algebraic multigrid method for solvin
very large electromagnetic system#EE Trans. Magn.vol. 34, pp.
3327-3330, Sept. 1998.
D. Lahaye, H. De Gersem, S. Vandewalle, and K. Hameyer, “Algebra
multigrid for complex symmetric systemdEEE Trans. Magn.vol. 36,
pp. 1535-1538, July 2000. . _ 1984, he joined the newly established City Univer-
T. Dupont, R. P. Kendall, _and H. H. Ra_chfor.d,' An_ approximate f_acto sity of Hong Kong, where he was instrumental in
ization procedure for solving self-adjoint elliptic difference equatlons,gening up a new department. He was promoted to Full Professor in 1989, and
SIAM J. Numer. Analvol. 5, no. 3, pp. 559-573, 1968. in 1994, he was awarded one of the first two personal chairs in the University.
L. Tsang, C. H. Chan, H. Sangani, A. Ishimaru, and P. Phu, “A bandggk is the founding Director of the Wireless Communications Research Center
matrix iterative approach to Monte Carlo simulations of large-scal@ormerly known as the Telecommunications Research Center). He currently
random rough-surface scattering,’Electromag. Waves Applicavol.  heads the Department of Electronic Engineering, which is the largest of its kind
7, no. 9, pp. 1185-1200, 1993. in Hong Kong with 220 full-time staff members, including 65 faculties. He has
A. D. Yaghjian, “Banded-matrix preconditioning for electric-field inte-authored or co-authored over 120 journal papers and has presented 140 papers
gral equations,” iHEEE AP-S Int. Symp. DigMontreal, QC, Canada, in international conferences. He is the External Examiner of numerous graduate
1997, pp. 1806-1809. students in sister universities, both local and overseas. He is also active in
C. H. Ahn, W. C. Chew, J. S. Zhao, and E. Michielssen, “Numericapplied research, consultancy and other types of technology transfers. Despite
study of approximate inverse preconditioner for two-dimensional efiis heavy administrative load, he remains active in research in microwave
gine inlet problems, Electromagneticsvol. 19, no. 1, pp. 131-146, devices and antenna designs for wireless communications. He is the principal
1999. investigator of many funded projects. He holds one patent. He is liséthis
Y. Y. Botros and J. L. Volakis, “Preconditioned generalized minimaYVho in the WorldandWho's Who in the Science and Engineering in the World
residual iterative scheme for perfectly matched layer terminated aj _Prof. \_(ung |squ|Iow of the Chinese Institution ofEIectrc_Jnl(_:s,thelnst_ltutlon
plication,” IEEE Microwave Guided Wave Letvol. 9, pp. 4547, fE_IectrlcaI Englneers(IEE),U.K.,anq the Hong _Konglnstltutl_on of Engineers.
Feb. 1999. Heisa member of Eta Ke}ppa Nu, F_>h| P_(appa Phl_, Tau Be_ta_ Fl, and t_he Electro-
agnetics Academy. He is also active in professional activities. He is currently
e chairman of the electronics discipline of the Hong Kong Institution of En-
1996 ﬂir}zgrsHHe hKas bean the gtﬁneral qzair?eflrtlhof FTanyénterrEtiona}l t(_:om‘feret?]ces
) ... held in Hong Kong. He was the president of the Hong Kong Association for the
R.S. Chen, E. K. N. Yung, C. H. Chan, and D. G. Fang, "Applicatio dvancemegntof gcience and Tepchnology (1998—1939), prgesident of the Associ-
of preconditioned CG-FFT te_Ch”'Fl_“e to method of lines for analysis Qo of Experts for the Modernization of China (1989—1990, 1998-1999), and
the infinite plane metallic grating Microwave Opt. Technol. Leftvol.  yice president of the Hong Kong Institution of Engineers (1999-2000). He has
24, no. 3, pp. 170-175, Mar. 2000. o ‘been the recipient of numerous awards in applied research, including the 1991
R. S. Chen, K. F. Tsang, and E. K. N. Yung, “Application of precondiGrand Prize in the Texas Instruments Incorporated Design Championship, the
tioning technique to method of lines for millimeter wave scatterif@,” 1998 Silver Medal presented at the Chinese International Invention Exposition,
J. Infrared Millim. Wavesvol. 21, no. 8, pp. 1281-1301, Aug. 2000. and the 1999 CMA Design Award. He also co-authored a paper that won the
Z. S. Sackset al, “A perfectly matched anisotropic absorber for use1996 Young Scientist Award presented at the International Symposium on An-
as an absorbing boundary conditioffEE Trans. Antennas Propagat. tennas and Propagation, Tokyo, Japan. He holds an honorary professorship with
vol. 43, pp. 1460-1463, Dec. 1995. two major universities in China.

Edward Kai-Ning Yung (M'85—-SM’85) was bornin
Hong Kong. He received the B.Sc. degree in electrical
engineering (with special distinction), and the M.Sc.
and Ph.D. degrees from the University of Mississippi,
University, in 1972, 1974, and 1977, respectively.
Upon graduation, he was briefly with the Elec-
tromagnetic Laboratory, University of lllinois at
Urbana-Champaign. In 1978, he returned to Hong
Kong and joined the Hong Kong Polytechnic. In

F. X. Canning, “Diagonal preconditioners for the EFIE using a wavelt#:
basis,”IEEE Trans. Antennas Propagatol. 44, pp. 1239-1246, Sept.



1172

Chi H. Chan (S'86-M'86—SM’'00) received the Ph.D. degree in electrical el
gineering from the University of lllinois at Urbana-Champaign, in 1987.
From 1987 to 1989, he was a Visiting Assistant Professor at University of Il
nois at Urbana-Champaign, where he was associated with the Electromag
Communication Laboratory. In 1989, he joined the Department of Electri
Engineering, University of Washington, Seattle, where he was an Assistant
fessor. He then became an Associate Professor and achieved tenure in
Since April 1996, he has been with the Department of Electronic Engineeri
City University of Hong Kong, Kowloon, Hong Kong, where he is currently
Chair Professor of electronic engineering and Associate Dean (Research) of
Faculty of Science and Engineering. He is also a Guest Professor with the Xi'an

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 4, APRIL 2002

Da Gang Fang (SM'90) was born in Shanghai,
China, in June 1937. He graduated from the Beijing
Institute of Post and Telecommunications, Beijing,
China, in 1966.

From 1980 to 1982, he was a Visiting Scholar
at Laval University, Quebec, QC, Canada, and the
University of Waterloo, Waterloo, ON, Canada.
Since 1986, he has been a Professor at the Nanjing
University of Science and Technology (NUST),
Nanjing, China. In 1990, he qualified as a Ph.D.
Candidate Supervisor. Since 1987, he had been a

Jiaotong University, Xi'an, China, and an Advisory Professor with the Nanjingisiting Professor with six universities in Canada and in Hong Kong. He
University of Science and Technology, Nanjing, China. His research interests@o-edited one proceedings of an international conference, and has authored or
clude computational electromagnetics, antenna design, frequency-selective sowauthored two books, two book chapters, and nearly 300 papers, including
faces, microstrip interconnects, and rough surface scattering. He has authorest 30 papers appearing in international journals. He is the Vice Edifbhef

or co-authored over 200 journal and conference papers.

Chinese Journal of Microwaves

Prof. Chan is a Fellow of the International Commission on lllumination (CIE) Dr. Fang is a Fellow of the International Commission on lllumination (CIE).
and the Institution of Electrical Engineers (IEE), U.K. He was a recipient of thée is on the Editorial Board of the IEEERRNSACTIONS ON MICROWAVE
1991 National Science Foundation (NSF) PYI Award. He was also the recipi@fEORY AND TECHNIQUES

of the 1998-2000 Outstanding Teacher Award (EE FT Program) presented by
the City University of Hong Kong.

Dao Xiang Wang (S'00) was born in Jiangning,
Jiangsu Province, China, in January 1976. He is
currently working toward the M.Phil. degree in
electrical engineering at the Nanjing University of
Science and Technology (NUST), Nanjing, China
His scientific interests include microwave/
millimeter-wave integrated circuit and antenna and
electromagnetic numerical methods.




	MTT024
	Return to Contents


