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Abstract—The symmetric successive overrelaxation (SSOR)
preconditioning scheme is applied to the conjugate-gradient (CG)
method for solving a large system of linear equations resulting
from the use of edge-based finite-element method (FEM). For
this scheme, there is no additional computing time required
to construct the preconditioning matrix and it contains more
global information of the coefficient matrix when compared with
those of the banded-matrix preconditioning scheme. The efficient
implementation of this preconditioned CG (PCG) algorithm is
described in details for complex coefficient matrix. With SSOR
as the preconditioner and its efficient implementation in the CG
algorithm, this PCG approach can reach convergence in five times
CPU time shorter than CG for several typical structures. By
comparison with other preconditioned techniques, these results
demonstrate that SSOR preconditioning strategy is especially
effective for CG iterative method when an edge FEM is applied to
solve large-scale time–harmonic electromagnetic-field problems.

Index Terms—Conjugate-gradient method, finite-element
method, preconditioning technique, symmetric successive over-
relaxation.

I. INTRODUCTION

T HE finite-element method (FEM) has been applied to
the analysis of problems in electromagnetics for over 30

years. It can combine geometrical adaptability and material
generality for modeling arbitrary geometry and materials of
any composition. As a result, a large number of research papers
can be found in literature [1]–[4] and some books systemically
describing the application of this method in electromagnetics
are currently available [5], [6]. A finite-element model is
natural when the problem contains inhomogeneous material
regions so that surface integral-equation (IE) methods are either
incapable of modeling or are very costly to model. When ap-
plied to three-dimensional (3-D) problems in electromagnetics,
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the number of unknowns escalates rapidly as the size of the
problem increases. Therefore, the limiting factor in dealing
with 3-D problems is the unknown count and the associated
demands on computer storage and solution time. Techniques
that have storage and solution times are, thus, necessary
to tackle 3-D problems, where represents the total unknown
number. This is one of the principal reasons for the popularity
of partial differential equation technique over IE methods.
As the problem size increases, the IE and its hybrid methods
often need storage, , and quickly become
unmanageable in terms of memory storage and solution time.
The FEM is primarily a volume formulation for 3-D analysis
and the problem domain is broken into a finite-element basis
function set used to discretize the fields. The resulting linear
system of equations scales as for the FEM, where is
the average number of nonzero matrix equation elements per
row of the sparse linear system. This value is dependent upon
the order of the finite element used, but is typically between
10–100 and is independent of the size of the mesh. For a
six-unknown vector edge-based tetrahedral linear interpolation
finite element, is typically less than 20 [4]. The application
of the FEM to electromagnetic problems often yields a sparse,
positive definite, symmetric, and very high-order system of
linear algebraic equations. Solving such a system is a major
computational task. The classical method includes the Gaussian
elimination method and the closely relatedLU decomposition
with computational complexity. Moreover, these
so-called “direct” methods bring “fill-in,” i.e., nonzero entries
are created in certain positions where the coefficient matrix
originally has zeros. Fill-in is undesirable because it increases
both the computing time and storage requirement. Although
this fill-in could be reduced to some degree by selecting a
suitable global ordering of the unknowns, some node-ordering
strategies aim at making a coefficient matrix with a small
band and present some storage schemes appropriate for such
matrices. Nevertheless, these orderings are most efficient
only when the mesh is “long and narrow.” The best ordering
strategies depend very much on the specific problem to be
solved.

Direct solvers usually suffer from fill-in to an extent that these
large problems cannot be solved at a reasonable cost even on
the state-of-the-art parallel machines. It is, therefore, essential
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to employ solvers whose memory requirements are a small frac-
tion of the storage demand of the coefficient matrix. This neces-
sitates the use of iterative algorithms instead of direct solvers
to preserve the sparsity of the finite-element matrix. Especially
attractive are iterative methods that involve the coefficient ma-
trices only in terms of matrix-vector multiplication. The most
powerful iterative algorithm of these types is the conjugate-gra-
dient (CG) algorithm for solving positive definite linear system
[7]. Although the BiCG, a variation of the CG algorithm, some-
times converges much faster than the CG, its convergence is
highly erratic. The convergence rate of the CG method is mainly
determined by the condition number of the coefficient matrix,
which is closely related to the distribution of the eigenvalues of
coefficient matrix. The condition number of a linear system of
equations usually increases with the number of unknowns. The
solution of the linear system is the main expense of the whole
problem solution, which consumes over 95% of the CPU time
for FEM application in electromagnetics. It is then desirable to
precondition the coefficient matrix so that the modified system
is well conditioned and can converge to an exact solution in sig-
nificantly fewer iteration numbers than the original system.

II. THEORY

Recently, the number of iterations required in the CG method
can be controlled to some degree by the use of various precondi-
tioning strategies [8]–[13], which attempt to transform the ma-
trix (1) into one with more favorable properties for an iterative
method as follows:

(1)

The incompleteLU factorizations of the coefficient matrix and
its block variants are a widely used class of preconditioners
[14], another is based on the factorization of the approximated
inverse of the coefficient matrix [15]–[18]. However, to form
these preconditioners, additional computing time is required,
depending on the preconditioning algorithm. Therefore, in order
to apply preconditioners to a solution of large sparse linear ma-
trix (1) from the FEM, which has a computational complexity

, the complexity to obtain a preconditioner should be no
greater than that. The most simple and easiest way to satisfy
this limit is to use a diagonal or block diagonal inverse of the
coefficient matrix as a preconditioner [19], [20]. These simple
preconditioners can reduce the number of iterations for dense
linear systems from IE methods, but they do not result in a sig-
nificant reduction of iteration for sparse linear systems from
the FEM. Like the diagonal or block diagonal matrix precondi-
tioner, the symmetric successive overrelaxation (SSOR) precon-
ditioner can also directly be derived from the coefficient matrix
without additional cost, but can lead to a significant convergence
improvement for sparse linear systems. Its factorization is given
a priori, and there is no possibility of breakdown, as in the con-
struction phase of incomplete factorization methods [21]. It is
given in a factored form and shares many properties of other
factorization-based methods. Another advantage of the SSOR
as a preconditioner exists in that it contains more information
of the coefficient matrix when compared with a diagonal/block
diagonal matrix, which is perhaps efficient only for very long

and narrow structures. Therefore, the SSOR preconditioner can
speed up the CG algorithm more efficiently. Although the ap-
proximate inverse preconditioning scheme is widely used for
the CG algorithm [11], [18], it relies on finding a sparse pre-
conditioning matrix , which minimizes the Frobenius norm
of the residual matrix. The construction of is made usually in
a column-by-column manner in order to minimize the construc-
tion time. An important aspect of this approach is that only a few
columns of need to be constructed, and these columns are
typically chosen to refer to rows of a coefficient matrix. It can
be inferred that the approximate inverse preconditioning matrix
also contains more of the global information of a coefficient ma-
trix when compared with a diagonal/block diagonal precondi-
tioner. However, much time is spent in the construction phase
and the example displayed in [18] shows that approximate in-
verse preconditioning scheme does not lead to a significant im-
provement in CPU time consumption.

In the literature [12], [13], another promising preconditioner
for the CG algorithm is the algebraic multigrid method, and it
reduces the overall computation time by a factor of six when
compared to the SSOR scheme. However, the examples are only
involved in the analysis of a two-dimensional (2-D) Poisson
or scalar Helmholtz equations. The 3-D full-wave vector
Helmholtz equations often met in microwave engineering are
not concerned. Nevertheless, the algebraic multigrid method
is a competitive preconditioner for an iterative solver and can
potentially be extended to 3-D full-wave electromagnetic anal-
ysis in the future after some efforts have been taken. Although
the SSOR preconditioning scheme has been developed by Saad
[11], to the best knowledge of the authors, its application is
not found for time–harmonic electromagnetic-field full-wave
analysis in the published literature and no comparison of con-
vergence curves is made with other preconditioning schemes.
Therefore, in this paper, the SSOR scheme is applied to a vector
FEM for analysis of the large 3-D Helmholtz vector-equation
electromagnetic boundary-value problems.

In the SSOR preconditioning scheme, the preconditioner
is chosen as follows:

(2)

where in (1), is the lower triangular matrix,
is the positive diagonal matrix, is the upper triangular ma-

trix, and , . It is said that the value of
does not have great influence on the convergence of the sym-

metric successive overrelaxation preconditioned conjugate-gra-
dient (SCG) algorithm [11], and we simply choose its value to
be one. Since the convergence speed of the CG method largely
depends on the condition number of the coefficient matrixof
(1), the linear system (1) could be scaled by a preconditioner
and then transformed into the system given by

(3)

where

(4)
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For version A of the CG method given in [7], the straight-
forward preconditioned conjugate-gradient (PCG) algorithm is
implemented as follows. The right-hand-side vector is initially
transformed and the system is then solved for the intermediate
vector , and this vector is multiplied by ,

, , and in succession at each iterative
step. When the solution converges,could be recovered from

. If denotes the number of nonzero entries in matrix
, this straightforward implementation of the PCG would re-

quire multiply–adds per iteration. However, con-
sidering that ( ), ( ), the part of coefficient matrix ,

, and in the CG algorithm [6] can be computed ef-
ficiently. Since the efficient implementation of SCG algorithms
for complex coefficient matrix is not given in [11], the SCG al-
gorithm is given in detail as follows.

With an initial guess and define

(5)

(6)

(7)

For , let

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

where is the Euclidean norm of the vector,
the inner product is defined as for any two
vectors , and the ad-
joint matrix is defined by for a given
matrix . It can be easily inferred that , where the
asterisk denotes a complex conjugation anddenotes a transpo-
sition. This efficient implementation of the SCG would require

multiply–adds per iteration. This cost of com-
putation is asymptotically one-half as many as the straightfor-
ward implementation if is large enough and is almost
the same as the direct CG method.

III. N UMERICAL RESULTS AND DISCUSSION

Our edge-based FEM is first used to analyze a 2-D discon-
tinuity in the waveguide filled with a full-height dielectric, as
shown in Fig. 1(a). The rectangular waveguide have a width of

mm and a height of mm and the inserted
dielectric material slab has a dimension of mm and

mm and a dielectric constant of . In order
to obtain an input reflection coefficient, one block of perfectly

(a)

(b)

Fig. 1. (a) Configuration of a full-height dielectric-filled rectangular
waveguide. (b) Magnitude ofS versus frequency for the dielectric post
discontinuity problem with widthw = 12 mm and lengthL = 6 mm.

matched layers (PMLs) is placed at the output port to simulate
the output matched load [22]. In Fig. 1(b), the curve shows our
calculations of the amplitude of an input reflection coefficient

versus frequency, which is compared with the literature
[1], and an excellent agreement is found. This provides a vali-
dation of our numerical FEM method and its implementation.

Secondly, a 3-D discontinuity of a waveguide partially filled
with a dielectric is shown in Fig. 2(a). The rectangular wave-
guide has a width of and a height of and the inserted
dielectric material slab has dimensions of , ,
and and the dielectric constant of . In this
edge-FEM 3-D simulation, the domain is divided into 22 400
tetrahedrons containing 5751 nodes, 30 518 edges, and 5566
forced edges. As a result, a total of 24 952 unknown edges are to
be solved in a large sparse matrix equation. In Fig. 2(b), the solid
curve shows our calculations of the amplitude of the input re-
flection coefficient by the SCG iterative solver. The com-
parison with a result from [2] is made and excellent agreement is
found. This demonstrates the validation of our numerical FEM
method and SCG iterative algorithm implementation.

The biconjugate gradient algorithm (BCG) is the natural ex-
tension of the CG to linear systems with the general non-Hermi-
tian nonsingular coefficient matrices. Although it is quite com-
petitive and sometimes converges faster than the CG approach
for well-conditioned cases, the BCG iterates are not character-
ized by a minimization property, which means that the algo-
rithm can exhibit a rather irregular convergence behavior with
wild oscillations in the residual norm. Furthermore, the break-
down may even occur in the BCG algorithm. Fig. 3 gives the
error history when the CG and BCG solvers are applied to the
waveguide partially filled with a dielectric, as shown in Fig. 2,
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(a)

(b)

Fig. 2. (a) Configuration of a partial-height dielectric-filled rectangular
waveguide. (b) Reflection and transmission characteristics of a dielectric-loaded
waveguide versus normalized wavenumber.

Fig. 3. Residual errors versus iteration number for the CG and BCG methods
when normalized wavenumberk b = 1:88.

where the residual errors defined as for
both CG and BCG algorithms. The CG method exhibits the
monotonic convergence behavior while the BCG is rather irreg-
ular and it needs many more steps to reach convergence than
the CG method because the use of PML absorbers within the
computational domain significantly deteriorates the condition
number of the resulting FEM system. Even though the con-
vergence of both the CG and BCG methods can be acceler-
ated using a preconditioning technique, which amounts to im-
proving the condition number of the matrix, it is well known
that the CG iterative solver is robust and it guarantees conver-
gence even for a very poorly conditioned system. To investi-
gate the efficiency of our proposed preconditioned CG algo-
rithm for the solution of a large sparse matrix equation from
the FEM, errors defined as for both the

SCG and CG versus numbers of iteration at different operating
points are illustrated in Fig. 4. Therefore, the convergence be-
havior of the algorithms at different input reflection coefficients

can be observed. Fig. 4(a)–(c) shows the convergence curves
corresponding to , respectively. It can be
found from Fig. 4 that both the SCG and CG methods con-
verge faster for a smaller reflection coefficient case than for a
larger one. This phenomenon may be attributed to the fact that
the sought fields are smoother when the input matching is good
and the fields vary sharply for large input mismatch. Although
the total number of iterations is different for these three cases,
it can be noted that the number of iteration for the SCG method
is 6.22, 5.75, and 5.34 times smaller than the direct CG one to
reach 70 dB residual errors, respectively. This computation
is carried out on a Pentium 400, and in the case,
the CPU time is 3948 s for the SCG and 24 547 s for the CG
algorithm. The computational time of the SCG is 6.21 times
faster, nearly its improvement factor of the iteration number
when compared to the CG algorithm. This fact also demon-
strates that the computation cost of the efficient implementa-
tion of the SCG is almost the same as the direct CG method. In
order to compare the relative speedup of the SSOR and other
preconditioners, Fig. 5 displays the convergence characteristics
of the SCG, tridiagonal preconditioned (TCG), diagonal precon-
ditioned (DCG), and conventional CG algorithms. As shown in
Fig. 5, the DCG algorithm has the minimal CPU cost, but only
achieves 40%–50% convergence improvement. The tridiagonal
preconditioner contains a bit more information of the coefficient
matrix than the diagonal matrix so that the TCG algorithm con-
verges slightly faster for the residual error to reach 55 dB. It is
still not clear why it becomes a bit slower afterwards. The SSOR
preconditioner possesses much more global information of the
coefficient matrix than diagonal/tridiagonal matrices and it
leads to better convergence improvement reasonably.

In order to investigate its adaptability to different microwave
structures, the SCG solver is applied to a PML terminated mi-
crostrip line. The dielectric constant is chosen to be 2.25,
the operating frequency at 9 GHz and geometric dimensions
are shown in Fig. 6 [18]. The domain is divided into 13 500
tetrahedrons containing 3410 nodes, 18 229 edges, and 3575
forced edges. As a result, a total of 14 654 unknown edges are
to be solved in a large sparse matrix equation system. The error
norms of SCG, TCG, DCG, and conventional CG algorithms
are compared in Fig. 7. It can be observed that the number
of iteration for the SCG method is at least four times smaller
than the direct CG one when reaching40 dB residual errors.
Noting their respective decreasing slopes, the convergence im-
provement is expected to be greater if the residual errors reach

70 dB. In this example, the convergence improvement of the
TCG is also larger than the DCG, but the difference is reduced if
the smaller residual errors are required. By comparison with the
results in [18], the SSOR preconditioning technique can achieve
more than 2 improvement in convergence than that of approx-
imate inverse one. Since the SSOR preconditioner is related to
the coefficient matrix , the efficient implementation of its al-
gorithm makes the computational complexity almost the same
as the ordinary CG solver without preconditioning. Therefore,
the CPU time saving is also almost the same as convergence
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(a) (b)

(c)

Fig. 4. (a) Residual errors versus iteration number for both the PCG and conventional CG method when normalized wavenumberk b = 2:35 and reflection
coefficient� = 0:002. (b) Residual errors versus iteration number for both PCG and conventional CG method when normalized wavenumberk b = 1:88 and
reflection coefficient� = 0:50. (c) Residual errors versus iteration number for both PCG and conventional CG method when normalized wavenumberk b = 1:60

and reflection coefficient� = 0:95.

Fig. 5. Residual errors versus iteration number for SSOR, TCG, DCG, and
conventional CG methods for the waveguide partially filled with dielectric when
normalized wavenumberk b = 1:60.

Fig. 6. Microstrip line geometry with PML truncation.

Fig. 7. Residual errors versus iteration number for SSOR, TCG, DCG, and
conventional CG methods for a PML truncated microstrip line with operating
frequency� = 9 GHz.

improvement. Compared to the approximate inverse precondi-
tioning scheme, the SSOR technique has the following three
advantages.

1) Its preconditioning matrix can be obtained directly from
coefficient matrix without any additional computa-
tional cost and there is no possibility of breakdown as
met in the construction phase of the approximate inverse
matrix.

2) There is no need of additional memory to store the ele-
ments of approximate inverse matrix.

3) Since the SSOR preconditioning matrix is part of the
coefficient matrix , its efficient implementation in the
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Fig. 8. Linear dipole antenna radiating in free space surrounded with PML
medium and a PEC surface termination.

Fig. 9. Comparison of normalized current distribution along dipole antenna
between the method of moments and FEM.

matrix-vector multiplication in the algorithm makes the
computational cost economical and its CPU time reduces
to almost one-half of the approximate inverse precondi-
tioned solver.

The approximate inverse sparse matrix is not directly related to
the coefficient matrix, therefore, its efficient implementation of
the algorithm cannot be realized even though the construction
of the approximate inverse preconditioner is successful.

The analysis of a linear dipole antenna radiating in free
space is also taken to investigate the convergence improvement
of the SCG algorithm. The 2-D frontal view of this problem ge-
ometry is given in Fig. 8. The antenna is located at the center
of the problem domain and the total thickness of the PML sur-
rounding the domain of interest is taken to be identical in all
three directions. The surrounding layers of the PML are them-
selves terminated by perfect electric conductor (PEC) surfaces
and the size of the problem domain of interest is selected as

, including the eight layers of the sur-
rounding PML with a total thickness of in all three di-
rections. The orthogonal FEM mesh for this domain generates
a total number of 70 630 unknown. The frequency of operation
is chosen to be 300 MHz. The normalized current distribution
along the dipole from both the method of moments (MoM) and
FEM is drawn in Fig. 9 for comparison and a good agreement is

Fig. 10. Residual errors versus iteration number for SSOR, TCG, DCG, and
conventional CG methods for linear dipole antenna radiating in free space with
operating frequencyf = 300 MHz.

found between them. The error norms of SCG, DCG, and con-
ventional CG algorithms are compared in Fig. 10. It can be ob-
served that the SCG algorithm is nearly four times faster than
the DCG to reach 40 dB residual error, while the conventional
CG algorithm cannot reach the required accuracy within a rea-
sonable time.

IV. CONCLUSIONS

In solving electromagnetic-field boundary-value problems by
the FEM, the differential equation is ultimately reduced to a set
of linear equations that can often be solved by iterative methods
for electrically large structures. Iterative methods typically in-
volve sparse matrix-vector multiplications, and the most pop-
ular iterative solvers are the Krylov subspace orthogonaliza-
tion methods, on which CG and its variations are based. It is
well known that the convergence of all iterative methods can
be accelerated using various preconditioning techniques. In this
paper, the SCG algorithm is proposed to solve the large sparse
matrix equation obtained from the edge-based FEM. The dis-
continuity in a partially dielectric-filled waveguide is first ana-
lyzed as an example. Although the total iteration numbers vary
at different operating frequencies, the preconditioned CG algo-
rithm converges at least five times faster than the conventional
one. When compared with the DCG and TCG algorithms, the
convergence improvement of the SCG is larger since the SSOR
preconditioner contains more global information of the coef-
ficient matrix. If compared with the approximate inverse pre-
conditioning algorithm, the SSOR does not require additional
computational cost for the construction of preconditioner, and
the efficient implementation of the SCG makes the computa-
tional cost at each iteration step almost one-half that for the ma-
trix-vector multiplication, which is just the same as the conven-
tional CG algorithm. The planar microstrip circuits and linear
dipole antenna radiating in free space are also analyzed as ex-
amples to demonstrate the SCG algorithm validity for different
structures. Therefore, the SCG iterative method is a powerful
tool for FEM application in large time–harmonic electromag-
netic boundary-value problems.



CHEN et al.: APPLICATION OF SCG ALGORITHM TO VECTOR FEM 1171

REFERENCES

[1] J. S. Wang and R. Mittra, “Finite element analysis of MMIC structures
and electronic packages using absorbing boundary conditions,”IEEE
Trans. Microwave Theory Tech., vol. 42, pp. 441–449, Mar. 1994.

[2] K. Ise, K. Inoue, and M. Koshiba, “Three-dimensional finite-element
method with edge elements for electromagnetic waveguide discontinu-
ities,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1289–1295,
Aug. 1991.

[3] J.-F. Lee and R. Mittra, “A note on the application of edge-ele-
ment for modeling three-dimensional inhomogeneously filled cavi-
ties,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1767–1773,
Sept. 1992.

[4] J.-Y. Wu and R. Lee, “The advantages of triangular and tetrahedral edge
elements for electromagnetic modeling with the finite element method,”
IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1431–1437, Sept.
1997.

[5] J. L. Volakis, A. Chatterjee, and L. C. Kempel,Finite Element Method
for Electromagnetic. Piscataway, NJ: IEEE Press, 1998.

[6] J. M. Jin,The Finite Element Method in Electromagnetics. New York:
Wiley, 1993.

[7] T. K. Sarkar and E. Arvas, “On a class of finite step iterative methods
(conjugate directions) for the solution of an operator equation arising
in electromagnetics,”IEEE Trans. Antennas Propagat., vol. AP-33, pp.
1058–1066, Oct. 1985.

[8] O. Axelsson and L. Y. Kolotilina, “Preconditioned conjugate gradient
methods,” inLecture Notes in Mathematics, A. Dold, B. Eckmann, and
F. Takens, Eds. Berlin, Germany: Springer-Verlag, 1990, vol. 1457,
Proceedings 1989.

[9] O. Axelsson, “On the rate of convergence of the preconditioned conju-
gate gradient method,”Numer. Math., vol. 48, pp. 499–523, 1986.

[10] D. S. Kershaw, “The incomplete Cholesky-conjugate gradient method
for the solution of systems of linear equations,”J. Comput. Phys., vol.
26, pp. 43–65, 1978.

[11] Y. Saad,Iterative Methods for Sparse Linear Systems. Boston, MA:
PWS–Kent, 1995.

[12] R. Mertens, H. De Gersem, R. Belmans, K. Hameyer, D. Lahaye, S.
Vandewalle, and D. Roose, “An algebraic multigrid method for solving
very large electromagnetic systems,”IEEE Trans. Magn., vol. 34, pp.
3327–3330, Sept. 1998.

[13] D. Lahaye, H. De Gersem, S. Vandewalle, and K. Hameyer, “Algebraic
multigrid for complex symmetric systems,”IEEE Trans. Magn., vol. 36,
pp. 1535–1538, July 2000.

[14] T. Dupont, R. P. Kendall, and H. H. Rachford, “An approximate factor-
ization procedure for solving self-adjoint elliptic difference equations,”
SIAM J. Numer. Anal., vol. 5, no. 3, pp. 559–573, 1968.

[15] L. Tsang, C. H. Chan, H. Sangani, A. Ishimaru, and P. Phu, “A banded
matrix iterative approach to Monte Carlo simulations of large-scale
random rough-surface scattering,”J. Electromag. Waves Applicat., vol.
7, no. 9, pp. 1185–1200, 1993.

[16] A. D. Yaghjian, “Banded-matrix preconditioning for electric-field inte-
gral equations,” inIEEE AP-S Int. Symp. Dig., Montreal, QC, Canada,
1997, pp. 1806–1809.

[17] C. H. Ahn, W. C. Chew, J. S. Zhao, and E. Michielssen, “Numerical
study of approximate inverse preconditioner for two-dimensional en-
gine inlet problems,”Electromagnetics, vol. 19, no. 1, pp. 131–146,
1999.

[18] Y. Y. Botros and J. L. Volakis, “Preconditioned generalized minimal
residual iterative scheme for perfectly matched layer terminated ap-
plication,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 45–47,
Feb. 1999.

[19] F. X. Canning, “Diagonal preconditioners for the EFIE using a wavelet
basis,”IEEE Trans. Antennas Propagat., vol. 44, pp. 1239–1246, Sept.
1996.

[20] R. S. Chen, E. K. N. Yung, C. H. Chan, and D. G. Fang, “Application
of preconditioned CG–FFT technique to method of lines for analysis of
the infinite plane metallic grating,”Microwave Opt. Technol. Lett., vol.
24, no. 3, pp. 170–175, Mar. 2000.

[21] R. S. Chen, K. F. Tsang, and E. K. N. Yung, “Application of precondi-
tioning technique to method of lines for millimeter wave scattering,”Int.
J. Infrared Millim. Waves, vol. 21, no. 8, pp. 1281–1301, Aug. 2000.

[22] Z. S. Sackset al., “A perfectly matched anisotropic absorber for use
as an absorbing boundary condition,”IEEE Trans. Antennas Propagat.,
vol. 43, pp. 1460–1463, Dec. 1995.

Ru-Shan Chen(M’93) was born in Jiangsu, China.
He received the B.Sc. and M.Sc. degrees from South-
east University, Nanjing, China, in 1987 and 1990,
respectively, both in radio engineering.

Upon graduation, he joined the Department
of Electrical Engineering, Nanjing University of
Science and Technology (NUST), Nanjing, China,
where he was initially a Teaching Assistant and then
a Lecturer in 1992. In September 1996, he was a
Visiting Scholar with the Department of Electronic
Engineering, City University of Hong Kong, initially

as a Research Associate, a Senior Research Associate in July 1997, and a
Research Fellow in April 1998. From June to September 1999, he was also a
Visiting Scholar at Montreal University, Montreal, QC, Canada. In September
1999, he became a Full Professor and Associate Director of the Microwave and
Communication Center, NUST. He has taught several courses, including “Com-
puter Language and Algorithm,” “Professional English,” “Electromagnetic
Field and Wave Theory,” “Computational Electromagnetics,” “Microwave
Ferrite Theory and Applications,” and “Electromagnetic Compatibility.” He
has authored or co-authored over 80 papers, including 42 papers that have
appeared in international journals. His research interests mainly include
microwave/millimeter-wave systems, measurements, antennas, circuits, and
computational electromagnetics.

Dr. Chen was the recipient of the 1992 Third-Class Science and Technology
Advance Prize presented by the National Military Industry Department of
China, the 1993 Third-Class Science and Technology Advance Prize presented
by the National Education Committee of China, the 1996 Second-Class
Science and Technology Advance Prize presented by the National Education
Committee of China, and the 1999 First-Class Science and Technology
Advance Prize presented by JiangSu Province. He was also the recipient of the
NUST Excellent Honor Prize for academic achievement in 1994, 1996, 1997,
1999, and 2000.

Edward Kai-Ning Yung (M’85–SM’85) was born in
Hong Kong. He received the B.Sc. degree in electrical
engineering (with special distinction), and the M.Sc.
and Ph.D. degrees from the University of Mississippi,
University, in 1972, 1974, and 1977, respectively.

Upon graduation, he was briefly with the Elec-
tromagnetic Laboratory, University of Illinois at
Urbana-Champaign. In 1978, he returned to Hong
Kong and joined the Hong Kong Polytechnic. In
1984, he joined the newly established City Univer-
sity of Hong Kong, where he was instrumental in

setting up a new department. He was promoted to Full Professor in 1989, and
in 1994, he was awarded one of the first two personal chairs in the University.
He is the founding Director of the Wireless Communications Research Center
(formerly known as the Telecommunications Research Center). He currently
heads the Department of Electronic Engineering, which is the largest of its kind
in Hong Kong with 220 full-time staff members, including 65 faculties. He has
authored or co-authored over 120 journal papers and has presented 140 papers
in international conferences. He is the External Examiner of numerous graduate
students in sister universities, both local and overseas. He is also active in
applied research, consultancy and other types of technology transfers. Despite
his heavy administrative load, he remains active in research in microwave
devices and antenna designs for wireless communications. He is the principal
investigator of many funded projects. He holds one patent. He is listed inWho’s
Who in the WorldandWho’s Who in the Science and Engineering in the World.

Prof. Yung is a Fellow of the Chinese Institution of Electronics, the Institution
of Electrical Engineers (IEE), U.K., and the Hong Kong Institution of Engineers.
He is a member of Eta Kappa Nu, Phi Kappa Phi, Tau Beta Pi, and the Electro-
magnetics Academy. He is also active in professional activities. He is currently
the chairman of the electronics discipline of the Hong Kong Institution of En-
gineers. He has been the general chairman of many international conferences
held in Hong Kong. He was the president of the Hong Kong Association for the
Advancement of Science and Technology (1998–1999), president of the Associ-
ation of Experts for the Modernization of China (1989–1990, 1998–1999), and
vice president of the Hong Kong Institution of Engineers (1999–2000). He has
been the recipient of numerous awards in applied research, including the 1991
Grand Prize in the Texas Instruments Incorporated Design Championship, the
1998 Silver Medal presented at the Chinese International Invention Exposition,
and the 1999 CMA Design Award. He also co-authored a paper that won the
1996 Young Scientist Award presented at the International Symposium on An-
tennas and Propagation, Tokyo, Japan. He holds an honorary professorship with
two major universities in China.



1172 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 4, APRIL 2002

Chi H. Chan (S’86–M’86–SM’00) received the Ph.D. degree in electrical en-
gineering from the University of Illinois at Urbana-Champaign, in 1987.

From 1987 to 1989, he was a Visiting Assistant Professor at University of Illi-
nois at Urbana-Champaign, where he was associated with the Electromagnetic
Communication Laboratory. In 1989, he joined the Department of Electrical
Engineering, University of Washington, Seattle, where he was an Assistant Pro-
fessor. He then became an Associate Professor and achieved tenure in 1993.
Since April 1996, he has been with the Department of Electronic Engineering,
City University of Hong Kong, Kowloon, Hong Kong, where he is currently a
Chair Professor of electronic engineering and Associate Dean (Research) of the
Faculty of Science and Engineering. He is also a Guest Professor with the Xi’an
Jiaotong University, Xi’an, China, and an Advisory Professor with the Nanjing
University of Science and Technology, Nanjing, China. His research interests in-
clude computational electromagnetics, antenna design, frequency-selective sur-
faces, microstrip interconnects, and rough surface scattering. He has authored
or co-authored over 200 journal and conference papers.

Prof. Chan is a Fellow of the International Commission on Illumination (CIE)
and the Institution of Electrical Engineers (IEE), U.K. He was a recipient of the
1991 National Science Foundation (NSF) PYI Award. He was also the recipient
of the 1998–2000 Outstanding Teacher Award (EE FT Program) presented by
the City University of Hong Kong.

Dao Xiang Wang (S’00) was born in Jiangning,
Jiangsu Province, China, in January 1976. He is
currently working toward the M.Phil. degree in
electrical engineering at the Nanjing University of
Science and Technology (NUST), Nanjing, China

His scientific interests include microwave/
millimeter-wave integrated circuit and antenna and
electromagnetic numerical methods.

Da Gang Fang (SM’90) was born in Shanghai,
China, in June 1937. He graduated from the Beijing
Institute of Post and Telecommunications, Beijing,
China, in 1966.

From 1980 to 1982, he was a Visiting Scholar
at Laval University, Quebec, QC, Canada, and the
University of Waterloo, Waterloo, ON, Canada.
Since 1986, he has been a Professor at the Nanjing
University of Science and Technology (NUST),
Nanjing, China. In 1990, he qualified as a Ph.D.
Candidate Supervisor. Since 1987, he had been a

Visiting Professor with six universities in Canada and in Hong Kong. He
co-edited one proceedings of an international conference, and has authored or
co-authored two books, two book chapters, and nearly 300 papers, including
over 30 papers appearing in international journals. He is the Vice Editor ofThe
Chinese Journal of Microwaves.

Dr. Fang is a Fellow of the International Commission on Illumination (CIE).
He is on the Editorial Board of the IEEE TRANSACTIONS ON MICROWAVE

THEORY AND TECHNIQUES.


	MTT024
	Return to Contents


